-frames and almost compact frames
A criterion for the existence of an initial completion of a concrete category universal w.r.tḟinite products and subobjects is presented. For metric spaces and uniformly continuous maps this completion is the category of uniform spaces.
An embedding X ⊂ G of a topological space X into a topological group G is called functorial if every homeomorphism of X extends to a continuous group homomorphism of G. It is shown that the interval [0, 1] admits no functorial embedding into a finite-dimensional or metrizable topological group.
In [1], various generalizations of the separation properties, the notion of closed and strongly closed points and subobjects of an object in an arbitrary topological category are given. In this paper, the relationship between various generalized separation properties as well as relationship between our separation properties and the known ones ([4], [5], [7], [9], [10], [14], [16]) are determined. Furthermore, the relationships between the notion of closedness and strongly closedness are investigated...
Let be a completely distributive lattice and C a topological construct; a process is given in this paper to obtain a topological construct , called the tower extension of (indexed by ). This process contains the constructions of probabilistic topological spaces, probabilistic pretopological spaces, probabilistic pseudotopological spaces, limit tower spaces, pretopological approach spaces and pseudotopological approach spaces, etc, as special cases. It is proved that this process has a lot...