Displaying 41 – 60 of 72

Showing per page

Precovers and Goldie’s torsion theory

Ladislav Bican (2003)

Mathematica Bohemica

Recently, Rim and Teply , using the notion of τ -exact modules, found a necessary condition for the existence of τ -torsionfree covers with respect to a given hereditary torsion theory τ for the category R -mod of all unitary left R -modules over an associative ring R with identity. Some relations between τ -torsionfree and τ -exact covers have been investigated in . The purpose of this note is to show that if σ = ( 𝒯 σ , σ ) is Goldie’s torsion theory and σ is a precover class, then τ is a precover class whenever...

Preradicals

Ladislav Bican, Pavel Jambor, Tomáš Kepka, Petr Němec (1974)

Commentationes Mathematicae Universitatis Carolinae

Radicals which define factorization systems

Barry J. Gardner (1991)

Commentationes Mathematicae Universitatis Carolinae

A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.

Relatively exact modules

Ladislav Bican (2003)

Commentationes Mathematicae Universitatis Carolinae

Rim and Teply [10] investigated relatively exact modules in connection with the existence of torsionfree covers. In this note we shall study some properties of the lattice τ ( M ) of submodules of a torsionfree module M consisting of all submodules N of M such that M / N is torsionfree and such that every torsionfree homomorphic image of the relative injective hull of M / N is relatively injective. The results obtained are applied to the study of relatively exact covers of torsionfree modules. As an application...

Currently displaying 41 – 60 of 72