Previous Page 2

Displaying 21 – 26 of 26

Showing per page

Quiver varieties and the character ring of general linear groups over finite fields

Emmanuel Letellier (2013)

Journal of the European Mathematical Society

Given a tuple ( 𝒳 1 , ... , 𝒳 k ) of irreducible characters of G L n ( F q ) we define a star-shaped quiver Γ together with a dimension vector v . Assume that ( 𝒳 1 , ... , 𝒳 k ) is generic. Our first result is a formula which expresses the multiplicity of the trivial character in the tensor product 𝒳 1 𝒳 k as the trace of the action of some Weyl group on the intersection cohomology of some (non-affine) quiver varieties associated to ( Γ , v ) . The existence of such a quiver variety is subject to some condition. Assuming that this condition is satisfied, we...

The Roquette category of finite p -groups

Serge Bouc (2015)

Journal of the European Mathematical Society

Let p be a prime number. This paper introduces the Roquette category p of finite p -groups, which is an additive tensor category containing all finite p -groups among its objects. In p , every finite p -group P admits a canonical direct summand P , called the edge of P . Moreover P splits uniquely as a direct sum of edges of Roquette p -groups, and the tensor structure of p can be described in terms of such edges. The main motivation for considering this category is that the additive functors from p to...

Currently displaying 21 – 26 of 26

Previous Page 2