An application of Burnside rings in elementary finite group theory.
Let be the Green ring of the weak Hopf algebra corresponding to Sweedler’s 4-dimensional Hopf algebra , and let be the automorphism group of the Green algebra . We show that the quotient group , where contains the identity map and is isomorphic to the infinite group and is the symmetric group of order 6.
Let be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra based on , then we investigate the structure of the representation ring of . Finally, we prove that the automorphism group of is just isomorphic to , where is the dihedral group with order 12.