-homotopy theory.
Page 1 Next
Voevodsky, Vladimir (1998)
Documenta Mathematica
Paul Balmer, Charles Walter (2002)
Annales scientifiques de l'École Normale Supérieure
Dhillon, Ajneet, Mináč, Ján (2006)
The New York Journal of Mathematics [electronic only]
Pittie, Harsh, Ram, Arun (1999)
Electronic Research Announcements of the American Mathematical Society [electronic only]
И.А. Панин (1991)
Zapiski naucnych seminarov POMI
R. W. Thomason (1985)
Annales scientifiques de l'École Normale Supérieure
Spencer Bloch, Hélène Esnault (2003)
Annales scientifiques de l'École Normale Supérieure
Kahn, Bruno (1996)
Documenta Mathematica
Voevodsky, Vladimir (2010)
Documenta Mathematica
J. Franke (1990)
Compositio Mathematica
Wiesława Nizioł (1998)
Annales scientifiques de l'École Normale Supérieure
Bernhard Köck (1991)
Journal für die reine und angewandte Mathematik
C. Soulé, H. Gillet (1996)
Journal für die reine und angewandte Mathematik
Pedro Luis del Angel, Stefan Müller-Stach (2008)
Annales de l’institut Fourier
We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.
Annette Huber, Guido Kings (1999)
Annales scientifiques de l'École Normale Supérieure
Marek Szyjewski (2011)
Fundamenta Mathematicae
In the classical Witt theory over a field F, the study of quadratic forms begins with two simple invariants: the dimension of a form modulo 2, called the dimension index and denoted e⁰: W(F) → ℤ/2, and the discriminant e¹ with values in k₁(F) = F*/F*², which behaves well on the fundamental ideal I(F)= ker(e⁰). Here a more sophisticated situation is considered, of quadratic forms over a scheme and, more generally, over an exact category with duality. Our purposes are: ...
Eric Leichtnam, Paolo Piazza (2004)
Annales de l’institut Fourier
Building on the theory of elliptic operators, we give a unified treatment of the following topics: - the problem of homotopy invariance of Novikov’s higher signatures on closed manifolds, - the problem of cut-and-paste invariance of Novikov’s higher signatures on closed manifolds, - the problem of defining higher signatures on manifolds with boundary and proving their homotopy invariance.
Bruno Kahn (2003)
Annales scientifiques de l'École Normale Supérieure
Neumann, Walter D. (2004)
Geometry & Topology
Anders S. Buch, Pierre-Emmanuel Chaput, Leonardo C. Mihalcea, Nicolas Perrin (2013)
Annales scientifiques de l'École Normale Supérieure
The product of two Schubert classes in the quantum -theory ring of a homogeneous space is a formal power series with coefficients in the Grothendieck ring of algebraic vector bundles on . We show that if is cominuscule, then this power series has only finitely many non-zero terms. The proof is based on a geometric study of boundary Gromov-Witten varieties in the Kontsevich moduli space, consisting of stable maps to that take the marked points to general Schubert varieties and whose domains...
Page 1 Next