The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this article we look into characterizing primitive groups in the following way. Given a primitive group we single out a subset of its generators such that these generators alone (the so-called primitive generators) imply the group is primitive. The remaining generators ensure transitivity or comply with specific features of the group. We show that, other than the symmetric and alternating groups, there are infinitely many primitive groups with one primitive generator each. These primitive groups...
It is shown that the invertible polynomial maps over a finite
field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in
the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1
it is shown that the tame subgroup of the invertible polynomial maps gives
only the even bijections, i.e. only half the bijections. As a consequence it
is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if
#S = q^(n−1).
Currently displaying 1 –
3 of
3