Loading [MathJax]/extensions/MathZoom.js
Suppose is a commutative ring with identity of prime characteristic and is an arbitrary abelian -group. In the present paper, a basic subgroup and a lower basic subgroup of the -component and of the factor-group of the unit group in the modular group algebra are established, in the case when is weakly perfect. Moreover, a lower basic subgroup and a basic subgroup of the normed -component and of the quotient group are given when is perfect and is arbitrary whose is -divisible....
Let be a normed Sylow -subgroup in a group ring of an abelian group with -component and a -basic subgroup over a commutative unitary ring with prime characteristic . The first central result is that is basic in and is -basic in , and is basic in and is -basic in , provided in both cases is -divisible and is such that its maximal perfect subring has no nilpotents whenever is natural. The second major result is that is -basic in and is -basic in ,...
Suppose is a perfect field of and is an arbitrary abelian multiplicative group with a -basic subgroup and -component . Let be the group algebra with normed group of all units and its Sylow -subgroup , and let be the nilradical of the relative augmentation ideal of with respect to . The main results that motivate this article are that is basic in , and is -basic in provided is -mixed. These achievements extend in some way a result of N. Nachev (1996) in Houston...
Currently displaying 1 –
3 of
3