Page 1 Next

Displaying 1 – 20 of 23

Showing per page

Automorphic realization of residual Galois representations

Robert Guralnick, Michael Harris, Nicholas M. Katz (2010)

Journal of the European Mathematical Society

We show that it is possible in rather general situations to obtain a finite-dimensional modular representation ρ of the Galois group of a number field F as a constituent of one of the modular Galois representations attached to automorphic representations of a general linear group over F , provided one works “potentially.” The proof is based on a close study of the monodromy of the Dwork family of Calabi–Yau hypersurfaces; this in turn makes use of properties of rigid local systems and the classification...

Galois module structure of generalized jacobians.

G. D. Villa-Salvador, M. Rzedowski-Calderón (1997)

Revista Matemática de la Universidad Complutense de Madrid

For a prime number l and for a finite Galois l-extension of function fields L / K over an algebraically closed field of characteristic p <> l, it is obtained the Galois module structure of the generalized Jacobian associated to L, l and the ramified prime divisors. In the cyclic case an implicit integral representation of the Jacobian is obtained and this representation is compared with the explicit representation.

New ramification breaks and additive Galois structure

Nigel P. Byott, G. Griffith Elder (2005)

Journal de Théorie des Nombres de Bordeaux

Which invariants of a Galois p -extension of local number fields L / K (residue field of char p , and Galois group G ) determine the structure of the ideals in L as modules over the group ring p [ G ] , p the p -adic integers? We consider this question within the context of elementary abelian extensions, though we also briefly consider cyclic extensions. For elementary abelian groups G , we propose and study a new group (within the group ring 𝔽 q [ G ] where 𝔽 q is the residue field) and its resulting ramification filtrations....

Currently displaying 1 – 20 of 23

Page 1 Next