The search session has expired. Please query the service again.
We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators on with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra associated with the quantum group . The purpose of this note is to present the construction.
We study equivalences for category of the rational Cherednik algebras of type : a highest weight equivalence between and for and an action of on an explicit non-empty Zariski open set of parameters ; a derived equivalence between and whenever and have integral difference; a highest weight equivalence between and a parabolic category for the general linear group, under a non-rationality assumption on the parameter . As a consequence, we confirm special cases of conjectures...
* The authors thank the “Swiss National Science Foundation” for its support.We study the subgroup structure, Hecke algebras, quasi-regular
representations, and asymptotic properties of some fractal groups of branch
type.
We introduce parabolic subgroups, show that they are weakly maximal,
and that the corresponding quasi-regular representations are irreducible.
These (infinite-dimensional) representations are approximated by finite-dimensional
quasi-regular representations. The Hecke algebras...
Currently displaying 1 –
3 of
3