Random Cayley graphs are expanders: a simple proof of the Alon-Roichman theorem.
The character degree graph of a finite group is the graph whose vertices are the prime divisors of the irreducible character degrees of and two vertices and are joined by an edge if divides some irreducible character degree of . It is proved that some simple groups are uniquely determined by their orders and their character degree graphs. But since the character degree graphs of the characteristically simple groups are complete, there are very narrow class of characteristically simple...
Let be a finite group. An element is called a vanishing element if there exists an irreducible complex character of such that . Denote by the set of orders of vanishing elements of . Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let be a finite group and a finite nonabelian simple group such that and . Then . We answer in affirmative this conjecture for , where and either , or is a prime number, and , where and either...
Let be the complex vector space of homogeneous linear polynomials in the variables . Suppose is a subgroup of , and is an irreducible character of . Let be the symmetry class of polynomials of degree with respect to and . For any linear operator acting on , there is a (unique) induced operator acting on symmetrized decomposable polynomials by In this paper, we show that the representation of the general linear group is equivalent to the direct sum of copies of a representation...
We improve a few results related to Huppert’s - conjecture. We also generalize a result about the covering number of character degrees to arbitrary finite groups.