Page 1 Next

Displaying 1 – 20 of 25

Showing per page

Some results on Sylow numbers of finite groups

Yang Liu, Jinjie Zhang (2024)

Czechoslovak Mathematical Journal

We study the group structure in terms of the number of Sylow p -subgroups, which is denoted by n p ( G ) . The first part is on the group structure of finite group G such that n p ( G ) = n p ( G / N ) , where N is a normal subgroup of G . The second part is on the average Sylow number asn ( G ) and we prove that if G is a finite nonsolvable group with asn ( G ) < 39 / 4 and asn ( G ) 29 / 4 , then G / F ( G ) A 5 , where F ( G ) is the Fitting subgroup of G . In the third part, we study the nonsolvable group with small sum of Sylow numbers.

Sottogruppi massimali dei sottogruppi di Sylow e complementi normali

Anna Luisa Gilotti, Luigi Serena (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note conditions for the existence of a normal p -complement and for the supersolubility of a finite group are given.

Su una classe di gruppi finiti supersolubili

Alma D’Aniello (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we study the class of finite groups G whose nilpotent residual is a Hall subgroup having all subgroups normal in G .

Subnormal, permutable, and embedded subgroups in finite groups

James Beidleman, Mathew Ragland (2011)

Open Mathematics

The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is subnormal....

Sull'esistenza di sottogruppi nilpotenti auto-normalizzanti in alcuni gruppi semplici

Alma D’Aniello (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider the Suzuki groups and we show that there are no nilpotent self-normalizing subgroups and there are three conjugacy classes of F-projectors, where F is the formation of supersoluble groups.

Currently displaying 1 – 20 of 25

Page 1 Next