Factorization of groups involving symmetric and alternating groups.
Let be a finite group, the smallest prime dividing the order of and a Sylow -subgroup of with the smallest generator number . There is a set of maximal subgroups of such that . In the present paper, we investigate the structure of a finite group under the assumption that every member of is either -permutably embedded or weakly -permutable in to give criteria for a group to be -supersolvable or -nilpotent.
Suppose G is a finite group and H is a subgroup of G. H is called weakly s-permutably embedded in G if there are a subnormal subgroup T of G and an s-permutably embedded subgroup of G contained in H such that G = HT and ; H is called weakly s-supplemented in G if there is a subgroup T of G such that G = HT and , where is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We investigate the influence of the existence of s-permutably embedded and weakly s-supplemented...