Previous Page 2

Displaying 21 – 37 of 37

Showing per page

Principalization algorithm via class group structure

Daniel C. Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

For an algebraic number field K with 3 -class group Cl 3 ( K ) of type ( 3 , 3 ) , the structure of the 3 -class groups Cl 3 ( N i ) of the four unramified cyclic cubic extension fields N i , 1 i 4 , of K is calculated with the aid of presentations for the metabelian Galois group G 3 2 ( K ) = Gal ( F 3 2 ( K ) | K ) of the second Hilbert 3 -class field F 3 2 ( K ) of K . In the case of a quadratic base field K = ( D ) it is shown that the structure of the 3 -class groups of the four S 3 -fields N 1 , ... , N 4 frequently determines the type of principalization of the 3 -class group of K in N 1 , ... , N 4 . This provides...

Probability that an element of a finite group has a square root

M. S. Lucido, M. R. Pournaki (2008)

Colloquium Mathematicae

Let G be a finite group of even order. We give some bounds for the probability p(G) that a randomly chosen element in G has a square root. In particular, we prove that p(G) ≤ 1 - ⌊√|G|⌋/|G|. Moreover, we show that if the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then p(G) ≤ 1 - 1/√|G|. Both of these bounds are best possible upper bounds for p(G), depending only on the order of G.

Product decompositions of quasirandom groups and a Jordan type theorem

Nikolay Nikolov, László Pyber (2011)

Journal of the European Mathematical Society

We first note that a result of Gowers on product-free sets in groups has an unexpected consequence: If k is the minimal degree of a representation of the finite group G , then for every subset B of G with | B | > | G | / k 1 / 3 we have B 3 = G . We use this to obtain improved versions of recent deep theorems of Helfgott and of Shalev concerning product decompositions of finite simple groups, with much simpler proofs. On the other hand, we prove a version of Jordan’s theorem which implies that if k 2 , then G has a proper subgroup...

Pronormal and subnormal subgroups and permutability

James Beidleman, Hermann Heineken (2003)

Bollettino dell'Unione Matematica Italiana

We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow p -subgroups for p < 7 permute with all subnormal subgroups.

Properties of subgroups not containing their centralizers

Lemnouar Noui (2009)

Annales mathématiques Blaise Pascal

In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group G to express as semi-direct product of a divisible subgroup D and some subgroup H . We also apply the main Theorem to the p -groups with center of index p 2 , for some prime p . For these groups we compute N c ( G ) the number of conjugacy classes and N a the number of abelian maximal subgroups and N n a the number of nonabelian...

Currently displaying 21 – 37 of 37

Previous Page 2