Displaying 41 – 60 of 242

Showing per page

On complemented subgroups of finite groups

Long Miao (2006)

Czechoslovak Mathematical Journal

A subgroup H of a group G is said to be complemented in G if there exists a subgroup K of G such that G = H K and H K = 1 . In this paper we determine the structure of finite groups with some complemented primary subgroups, and obtain some new results about p -nilpotent groups.

On decomposability of finite groups

Ruifang Chen, Xianhe Zhao (2017)

Czechoslovak Mathematical Journal

Let G be a finite group. A normal subgroup N of G is a union of several G -conjugacy classes, and it is called n -decomposable in G if it is a union of n distinct G -conjugacy classes. In this paper, we first classify finite non-perfect groups satisfying the condition that the numbers of conjugacy classes contained in its non-trivial normal subgroups are two consecutive positive integers, and we later prove that there is no non-perfect group such that the numbers of conjugacy classes contained in its...

On dicyclic groups as inner mapping groups of finite loops

Emma Leppälä, Markku Niemenmaa (2016)

Commentationes Mathematicae Universitatis Carolinae

Let G be a finite group with a dicyclic subgroup H . We show that if there exist H -connected transversals in G , then G is a solvable group. We apply this result to loop theory and show that if the inner mapping group I ( Q ) of a finite loop Q is dicyclic, then Q is a solvable loop. We also discuss a more general solvability criterion in the case where I ( Q ) is a certain type of a direct product.

On E-S-supplemented subgroups of finite groups

Changwen Li, Xuemei Zhang, Xiaolan Yi (2013)

Colloquium Mathematicae

The major aim of the present paper is to strengthen a nice result of Shemetkov and Skiba which gives some conditions under which every non-Frattini G-chief factor of a normal subgroup E of a finite group G is cyclic. As applications, some recent known results are generalized and unified.

On Exceptions in the Brauer-Kuroda Relations

Jerzy Browkin, Juliusz Brzeziński, Kejian Xu (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Let F be a Galois extension of a number field k with the Galois group G. The Brauer-Kuroda theorem gives an expression of the Dedekind zeta function of the field F as a product of zeta functions of some of its subfields containing k, provided the group G is not exceptional. In this paper, we investigate the exceptional groups. In particular, we determine all nilpotent exceptional groups, and give a sufficient condition for a group to be exceptional. We give many examples of nonnilpotent solvable...

Currently displaying 41 – 60 of 242