Displaying 781 – 800 of 1356

Showing per page

Pronormal and subnormal subgroups and permutability

James Beidleman, Hermann Heineken (2003)

Bollettino dell'Unione Matematica Italiana

We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow p -subgroups for p < 7 permute with all subnormal subgroups.

Properties of subgroups not containing their centralizers

Lemnouar Noui (2009)

Annales mathématiques Blaise Pascal

In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group G to express as semi-direct product of a divisible subgroup D and some subgroup H . We also apply the main Theorem to the p -groups with center of index p 2 , for some prime p . For these groups we compute N c ( G ) the number of conjugacy classes and N a the number of abelian maximal subgroups and N n a the number of nonabelian...

Quand seule la sous-somme vide est nulle modulo p

Jean-Marc Deshouillers (2007)

Journal de Théorie des Nombres de Bordeaux

Soit c &gt; 1 , p un nombre premier et 𝒜 une partie de / p de cardinal supérieur à c p telle que pour tout sous-ensemble non vide de 𝒜 , on a b b 0 . On montre qu’il existe s premier à p tel que l’ensemble s . 𝒜 est très concentré autour de l’origine et qu’il est presque entièrement composé d’éléments de partie fractionnaire positive. Plus précisément, on a a 𝒜 s a p &lt; 1 + O ( p - 1 / 4 ln p ) et a 𝒜 , { s a / p } 1 / 2 s a p = O ( p - 1 / 4 ln p ) . On montre également que les termes d’erreurs ne peuvent être remplacés par o ( p - 1 / 2 ) .

Recognition of characteristically simple group A 5 × A 5 by character degree graph and order

Maryam Khademi, Behrooz Khosravi (2018)

Czechoslovak Mathematical Journal

The character degree graph of a finite group G is the graph whose vertices are the prime divisors of the irreducible character degrees of G and two vertices p and q are joined by an edge if p q divides some irreducible character degree of G . It is proved that some simple groups are uniquely determined by their orders and their character degree graphs. But since the character degree graphs of the characteristically simple groups are complete, there are very narrow class of characteristically simple...

Recognition of some families of finite simple groups by order and set of orders of vanishing elements

Maryam Khatami, Azam Babai (2018)

Czechoslovak Mathematical Journal

Let G be a finite group. An element g G is called a vanishing element if there exists an irreducible complex character χ of G such that χ ( g ) = 0 . Denote by Vo ( G ) the set of orders of vanishing elements of G . Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let G be a finite group and M a finite nonabelian simple group such that Vo ( G ) = Vo ( M ) and | G | = | M | . Then G M . We answer in affirmative this conjecture for M = S z ( q ) , where q = 2 2 n + 1 and either q - 1 , q - 2 q + 1 or q + 2 q + 1 is a prime number, and M = F 4 ( q ) , where q = 2 n and either...

Currently displaying 781 – 800 of 1356