On Partial Ordering of Chief Factors in Solvable Groups.
A subgroup of a finite group is said to be conjugate-permutable if for all . More generaly, if we limit the element to a subgroup of , then we say that the subgroup is -conjugate-permutable. By means of the -conjugate-permutable subgroups, we investigate the relationship between the nilpotence of and the -conjugate-permutability of the Sylow subgroups of and under the condition that , where and are subgroups of . Some results known in the literature are improved and...
This article describes a rough subgroup with respect to a normal subgroup of a group, and some properties of the lower and the upper approximations in a group.
Let be a saturated formation containing the class of supersolvable groups and let be a finite group. The following theorems are presented: (1) if and only if there is a normal subgroup such that and every maximal subgroup of all Sylow subgroups of is either -normal or -quasinormally embedded in . (2) if and only if there is a normal subgroup such that and every maximal subgroup of all Sylow subgroups of , the generalized Fitting subgroup of , is either -normal or -quasinormally...