A Bers-like proof of the existence of train tracks for free group automorphisms
Using Lipschitz distance on Outer space we give another proof of the train track theorem.
Using Lipschitz distance on Outer space we give another proof of the train track theorem.
We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk {(x,y) ∈ ℝ²: 0 < x² + y² < 1} without fixed points.
The purpose of this paper is to prove the existence of a free subgroup of the group of all affine transformations on the plane with determinant 1 such that the action of the subgroup is locally commutative.
Let V be a pseudovariety of finite groups such that free groups are residually V, and let φ: F(A) → F(B) be an injective morphism between finitely generated free groups. We characterize the situations where the continuous extension φ' of φ between the pro-V completions of F(A) and F(B) is also injective. In particular, if V is extension-closed, this is the case if and only if φ(F(A)) and its pro-V closure in F(B) have the same rank. We examine a number of situations where the injectivity of φ' can...