Free products of topological groups with equal uniformities, II
We characterize the group property of being with infinite conjugacy classes (or icc, i.e. infinite and of which all conjugacy classes except are infinite) for groups which are extensions of groups. We prove a general result for extensions of groups, then deduce characterizations in semi-direct products, wreath products, finite extensions, among others examples we also deduce a characterization for amalgamated products and HNN extensions. The icc property is correlated to the Theory of von Neumann...
We prove a Margulis’ Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product , without 2-torsion. Moreover, if is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.