Lie-Algebren mit SI-Bedingungen.
Let G be a locally finite group satisfying the condition given in the title and suppose that G is not nilpotent-by-Chernikov. It is shown that G has a section S that is not nilpotent-by-Chernikov, where S is either a p-group or a semi-direct product of the additive group A of a locally finite field F by a subgroup K of the multiplicative group of F, where K acts by multiplication on A and generates F as a ring. Non-(nilpotent-by-Chernikov) extensions of this latter kind exist and are described in...
This paper deals with one of the ways of studying infinite groups many of whose subgroups have a prescribed property, namely the consideration of minimal conditions. If P is a theoretical property of groups and subgroups, we show that a locally graded group P satisfies the minimal conditions for subgroups not having P if and only if either G is a Cernikov group or every subgroup of G satisfies P, for certain values of P concerning normality, nilpotency and related ideas.
A group has subnormal deviation at most if, for every descending chain of non-subnormal subgroups of , for all but finitely many there is no infinite descending chain of non-subnormal subgroups of that contain and are contained in . This property , say, was investigated in a previous paper by the authors, where soluble groups with and locally nilpotent groups with were effectively classified. The present article affirms a conjecture from that article by showing that locally soluble-by-finite...