Schreier-Zassenhaus theorem for algebras. I
Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti con -gruppo abeliano elementare infinito e gruppo irriducibile di automorfismi di che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti...
We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.
A subgroup of a group is said to be normal-by-finite if the core of in has finite index in . It has been proved by Buckley, Lennox, Neumann, Smith and Wiegold that if every subgroup of a group G is normal-by-finite, then is abelian-by-finite, provided that all its periodic homomorphic images are locally finite. The aim of this article is to describe the structure of groups G for which the partially ordered set consisting of all normal-by-finite subgroups satisfies certain relevant...
Si presentano alcuni risultati che caratterizzano i gruppi algebrici unipotenti aventi come reticolo dei sottogruppi connessi una catena e si discutono alcuni risultati conseguenti.