Page 1

Displaying 1 – 2 of 2

Showing per page

Representations of (1,1)-knots

Alessia Cattabriga, Michele Mulazzani (2005)

Fundamenta Mathematicae

We present two different representations of (1,1)-knots and study some connections between them. The first representation is algebraic: every (1,1)-knot is represented by an element of the pure mapping class group of the twice punctured torus PMCG₂(T). Moreover, there is a surjective map from the kernel of the natural homomorphism Ω:PMCG₂(T) → MCG(T) ≅ SL(2,ℤ), which is a free group of rank two, to the class of all (1,1)-knots in a fixed lens space. The second representation is parametric: every...

Currently displaying 1 – 2 of 2

Page 1