On the subgroups of the Picard group.
We will explain how some new algebraic solutions of the sixth Painlevé equation arise from complex reflection groups, thereby extending some results of Hitchin and Dubrovin-- Mazzocco for real reflection groups. The problem of finding explicit formulae for these solutions will be addressed elsewhere.
The aim is to investigate the behaviour of (homomorphic images of) periodic linear groups which are factorized by mutually permutable subgroups. Mutually permutable subgroups have been extensively investigated in the finite case by several authors, among which, for our purposes, we only cite J. C. Beidleman and H. Heineken (2005). In a previous paper of ours (see M. Ferrara, M. Trombetti (2022)) we have been able to generalize the first main result of J. C. Beidleman, H. Heineken (2005) to periodic...
We classify the maximal irreducible periodic subgroups of PGL(q, ), where is a field of positive characteristic p transcendental over its prime subfield, q = p is prime, and × has an element of order q. That is, we construct a list of irreducible subgroups G of GL(q, ) containing the centre ×1q of GL(q, ), such that G/ ×1q is a maximal periodic subgroup of PGL(q, ), and if H is another group of this kind then H is GL(q, )-conjugate to a group in the list. We give criteria for determining...