On the Theory and Classification of Abelian p-Groups.
In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group to express as semi-direct product of a divisible subgroup and some subgroup . We also apply the main Theorem to the -groups with center of index , for some prime . For these groups we compute the number of conjugacy classes and the number of abelian maximal subgroups and the number of nonabelian...
Let be an infinite cardinal. Set , define for every , take as the first cardinal with , and put . If is a torsion-free group of cardinality at least and is its subgroup such that is torsion and , then contains a non-zero subgroup pure in . This generalizes the result from a previous paper dealing with -primary.
An exact sequence of torsion-free abelian groups is quasi-balanced if the induced sequence is exact for all rank-1 torsion-free abelian groups . This paper sets forth the basic theory of quasi-balanced sequences, with particular attention given to the case in which is a Butler group. The special case where is almost completely decomposable gives rise to a descending chain of classes of Butler groups. This chain is a generalization of the chain of Kravchenko classes that arise from balanced...
In this paper we investigate two new classes of torsion-free Abelian groups which arise in a natural way from the notion of a torsion-free Crawley group. A group is said to be an Erdős group if for any pair of isomorphic pure subgroups with , there is an automorphism of mapping onto ; it is said to be a weak Crawley group if for any pair of isomorphic dense maximal pure subgroups, there is an automorphism mapping onto . We show that these classes are extensive and pay attention to...
Let G be an abelian group and ◻ G its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that G/◻ G is a nil group.