Displaying 81 – 100 of 127

Showing per page

Properties of subgroups not containing their centralizers

Lemnouar Noui (2009)

Annales mathématiques Blaise Pascal

In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group G to express as semi-direct product of a divisible subgroup D and some subgroup H . We also apply the main Theorem to the p -groups with center of index p 2 , for some prime p . For these groups we compute N c ( G ) the number of conjugacy classes and N a the number of abelian maximal subgroups and N n a the number of nonabelian...

Pure subgroups

Ladislav Bican (2001)

Mathematica Bohemica

Let λ be an infinite cardinal. Set λ 0 = λ , define λ i + 1 = 2 λ i for every i = 0 , 1 , , take μ as the first cardinal with λ i < μ , i = 0 , 1 , and put κ = ( μ 0 ) + . If F is a torsion-free group of cardinality at least κ and K is its subgroup such that F / K is torsion and | F / K | λ , then K contains a non-zero subgroup pure in F . This generalizes the result from a previous paper dealing with F / K p -primary.

Quasi-balanced torsion-free groups

H. Pat Goeters, William Ullery (1998)

Commentationes Mathematicae Universitatis Carolinae

An exact sequence 0 A B C 0 of torsion-free abelian groups is quasi-balanced if the induced sequence 0 𝐐 Hom ( X , A ) 𝐐 Hom ( X , B ) 𝐐 Hom ( X , C ) 0 is exact for all rank-1 torsion-free abelian groups X . This paper sets forth the basic theory of quasi-balanced sequences, with particular attention given to the case in which C is a Butler group. The special case where B is almost completely decomposable gives rise to a descending chain of classes of Butler groups. This chain is a generalization of the chain of Kravchenko classes that arise from balanced...

Quasibases of p -groups

Otto Mutzbauer, Elias Toubassi (1999)

Rendiconti del Seminario Matematico della Università di Padova

Some generalizations of torsion-free Crawley groups

Brendan Goldsmith, Fatemeh Karimi, Ahad Mehdizadeh Aghdam (2013)

Czechoslovak Mathematical Journal

In this paper we investigate two new classes of torsion-free Abelian groups which arise in a natural way from the notion of a torsion-free Crawley group. A group G is said to be an Erdős group if for any pair of isomorphic pure subgroups H , K with G / H G / K , there is an automorphism of G mapping H onto K ; it is said to be a weak Crawley group if for any pair H , K of isomorphic dense maximal pure subgroups, there is an automorphism mapping H onto K . We show that these classes are extensive and pay attention to...

Square subgroups of rank two abelian groups

A. M. Aghdam, A. Najafizadeh (2009)

Colloquium Mathematicae

Let G be an abelian group and ◻ G its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that G/◻ G is a nil group.

Currently displaying 81 – 100 of 127