Centers of -isotypity in abelian groups
An endomorphism f of an Abelian group A is said to be inessentia! (in the category of Abelian groups) if it can be extended to an endomorphism of any Abelian group which contains A as a subgroup. In this paper we show that f is as above if and only if (f - v idA)(A) is contained in the rnaximal divisible subgroup of A for some v belonging to Z.
A new class of abelian -groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).