Definability in the lattice of equational theories of semigroups.
The notion of pseudovarieties of homomorphisms onto finite monoids was recently introduced by Straubing as an algebraic characterization for certain classes of regular languages. In this paper we provide a mechanism of equational description of these pseudovarieties based on an appropriate generalization of the notion of implicit operations. We show that the resulting metric monoids of implicit operations coincide with the standard ones, the only difference being the actual interpretation of pseudoidentities....
The notion of pseudovarieties of homomorphisms onto finite monoids was recently introduced by Straubing as an algebraic characterization for certain classes of regular languages. In this paper we provide a mechanism of equational description of these pseudovarieties based on an appropriate generalization of the notion of implicit operations. We show that the resulting metric monoids of implicit operations coincide with the standard ones, the only difference being the actual interpretation of pseudoidentities. As...
A monoid S 1 obtained by adjoining a unit element to a 2-testable semigroup S is said to be 2-testable. It is shown that a 2-testable monoid S 1 is either inherently non-finitely based or hereditarily finitely based, depending on whether or not the variety generated by the semigroup S contains the Brandt semigroup of order five. Consequently, it is decidable in quadratic time if a finite 2-testable monoid is finitely based.
This paper surveys the area of Free Burnside Semigroups. The theory of these semigroups, as is the case for groups, is far from being completely known. For semigroups, the most impressive results were obtained in the last 10 years. In this paper we give priority to the mathematical treatment of the problem and do not stress too much neither motivation nor the historical aspects. No proofs are presented in this paper, but we tried to give as many examples as was possible.
This paper surveys the area of Free Burnside Semigroups. The theory of these semigroups, as is the case for groups, is far from being completely known. For semigroups, the most impressive results were obtained in the last 10 years. In this paper we give priority to the mathematical treatment of the problem and do not stress too much neither motivation nor the historical aspects. No proofs are presented in this paper, but we tried to give as many examples as was possible.
An inflation of an algebra is formed by adding a set of new elements to each element in the original or base algebra, with the stipulation that in forming products each new element behaves exactly like the element in the base algebra to which it is attached. Clarke and Monzo have defined the generalized inflation of a semigroup, in which a set of new elements is again added to each base element, but where the new elements are allowed to act like different elements of the base, depending on the context...