Displaying 141 – 160 of 252

Showing per page

Pre-solid varieties of semigroups

K. Denecke, Jörg Koppitz (1995)

Archivum Mathematicum

Pre-hyperidentities generalize the concept of a hyperidentity. A variety V is said to be pre-solid if every identity in V is a pre-hyperidentity. Every solid variety is pre-solid. We consider pre-solid varieties of semigroups which are not solid, determine the smallest and the largest of them, and some elements in this interval.

Pre-strongly solid varieties of commutative semigroups

Sarawut Phuapong, Sorasak Leeratanavalee (2011)

Discussiones Mathematicae - General Algebra and Applications

Generalized hypersubstitutions are mappings from the set of all fundamental operations into the set of all terms of the same language do not necessarily preserve the arities. Strong hyperidentities are identities which are closed under the generalized hypersubstitutions and a strongly solid variety is a variety which every its identity is a strong hyperidentity. In this paper we give an example of pre-strongly solid varieties of commutative semigroups and determine the least and the greatest pre-strongly...

Radical decompositions of semiheaps

Ian Hawthorn, Tim Stokes (2009)

Commentationes Mathematicae Universitatis Carolinae

Semiheaps are ternary generalisations of involuted semigroups. The first kind of semiheaps studied were heaps, which correspond closely to groups. We apply the radical theory of varieties of idempotent algebras to varieties of idempotent semiheaps. The class of heaps is shown to be a radical class, as are two larger classes having no involuted semigroup counterparts. Radical decompositions of various classes of idempotent semiheaps are given. The results are applied to involuted I-semigroups, leading...

Relations on a lattice of varieties of completely regular semigroups

Mario Petrich (2020)

Mathematica Bohemica

Completely regular semigroups 𝒞ℛ are considered here with the unary operation of inversion within the maximal subgroups of the semigroup. This makes 𝒞ℛ a variety; its lattice of subvarieties is denoted by ( 𝒞ℛ ) . We study here the relations 𝐊 , T , L and 𝐂 relative to a sublattice Ψ of ( 𝒞ℛ ) constructed in a previous publication. For 𝐑 being any of these relations, we determine the 𝐑 -classes of all varieties in the lattice Ψ as well as the restrictions of 𝐑 to Ψ .

Currently displaying 141 – 160 of 252