Displaying 201 – 220 of 226

Showing per page

The tame degree and related invariants of non-unique factorizations

Franz Halter-Koch (2008)

Acta Mathematica Universitatis Ostraviensis

Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the ω -invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties.

Valuations of lines

Josef Mlček (1992)

Commentationes Mathematicae Universitatis Carolinae

We enlarge the problem of valuations of triads on so called lines. A line in an e -structure 𝔸 = A , F , E (it means that A , F is a semigroup and E is an automorphism or an antiautomorphism on A , F such that E E = 𝐈𝐝 A ) is, generally, a sequence 𝔸 B , 𝔸 U c , c 𝐅𝐙 (where 𝐅𝐙 is the class of finite integers) of substructures of 𝔸 such that B U c U d holds for each c d . We denote this line as 𝔸 ( U c , B ) c 𝐅𝐙 and we say that a mapping H is a valuation of the line 𝔸 ( U c , B ) c 𝐅𝐙 in a line 𝔸 ^ ( U ^ c , B ^ ) c 𝐅𝐙 if it is, for each c 𝐅𝐙 , a valuation of the triad 𝔸 ( U c , B ) in 𝔸 ^ ( U ^ c , B ^ ) . Some theorems on an existence of...

Weierstrass Points with First Non-Gap Four on a Double Covering of a Hyperelliptic Curve

Komeda, Jiryo, Ohbuchi, Akira (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.Let H be a 4-semigroup, i.e., a numerical semigroup whose minimum positive element is four. We denote by 4r(H) + 2 the minimum element of H which is congruent to 2 modulo 4. If the genus g of H is larger than 3r(H) − 1, then there is a cyclic covering π : C −→ P^1 of curves with degree 4 and its ramification point P such that the Weierstrass semigroup H(P) of P is H (Komeda [1]). In this paper it is showed that...

Currently displaying 201 – 220 of 226