Codes avec des mots infinis
Natural algorithms to compute rational expressions for recognizable languages, even those which work well in practice, may produce very long expressions. So, aiming towards the computation of the commutative image of a recognizable language, one should avoid passing through an expression produced this way. We modify here one of those algorithms in order to compute directly a semilinear expression for the commutative image of a recognizable language. We also give a second modification of the algorithm...
Natural algorithms to compute rational expressions for recognizable languages, even those which work well in practice, may produce very long expressions. So, aiming towards the computation of the commutative image of a recognizable language, one should avoid passing through an expression produced this way. We modify here one of those algorithms in order to compute directly a semilinear expression for the commutative image of a recognizable language. We also give a second modification of the algorithm...
We introduce the notion of nested distance desert automata as a joint generalization of distance automata and desert automata. We show that limitedness of nested distance desert automata is PSPACE-complete. As an application, we show that it is decidable in space whether the language accepted by an -state non-deterministic automaton is of a star height less than a given integer (concerning rational expressions with union, concatenation and iteration), which is the first ever complexity bound...
We introduce the notion of nested distance desert automata as a joint generalization of distance automata and desert automata. We show that limitedness of nested distance desert automata is PSPACE-complete. As an application, we show that it is decidable in 22O(n) space whether the language accepted by an n-state non-deterministic automaton is of a star height less than a given integer h (concerning rational expressions with union, concatenation and iteration), which is the first ever complexity...
The notion of pseudovarieties of homomorphisms onto finite monoids was recently introduced by Straubing as an algebraic characterization for certain classes of regular languages. In this paper we provide a mechanism of equational description of these pseudovarieties based on an appropriate generalization of the notion of implicit operations. We show that the resulting metric monoids of implicit operations coincide with the standard ones, the only difference being the actual interpretation of pseudoidentities....