Algebraic analysis in structures with the Kaplansky-Jacobson property
In 1950 N. Jacobson proved that if u is an element of a ring with unit such that u has more than one right inverse, then it has infinitely many right inverses. He also mentioned that I. Kaplansky proved this in another way. Recently, K. P. Shum and Y. Q. Gao gave a new (non-constructive) proof of the Kaplansky-Jacobson theorem for monoids admitting a ring structure. We generalize that theorem to monoids without any ring structure and we show the consequences of the generalized Kaplansky-Jacobson...