Globals of completely regular periodic semigroups.
Un elemento di un semigruppo è un elemento accrescitivo sinistro se la traslazione di , associata all'elemento , è surgettiva e non è iniettiva (E. S. Ljapin, [13], § 5). Così, per ogni elemento accrescitivo sinistro , esiste un sottoinsieme proprio di tale che la restrizione a di è biunivoca. Se è un sottosemigruppo (risp. un ideale destro) di , l'elemento accrescitivo sinistro viene detto buono (risp. molto buono) (F. Migliorini [15], [16], [17]). Utilizzando il monoide biciclico,...
The idempotent semirings for which Green’s -relation on the multiplicative reduct is a congruence relation form a subvariety of the variety of all idempotent semirings. This variety contains the variety consisting of all the idempotent semirings which do not contain a two-element monobisemilattice as a subsemiring. Various characterizations will be given for the idempotent semirings for which the -relation on the multiplicative reduct is the least lattice congruence.
Green's relations and their generalizations on semigroups are useful in studying regular semigroups and their generalizations. In this paper, we first give a brief survey of this topic. We then give some examples to illustrate some special properties of generalized Green's relations which are related to completely regular semigroups and abundant semigroups.