Periodic weakly-cancellative semigroups.
T. Nordahl (1976/1977)
Semigroup forum
H. Hamilton (1975)
Semigroup forum
B. Piochi (1991)
Semigroup forum
A. Varisco, A. Cherubini (1984)
Semigroup forum
Jaroslav Ježek, Tomáš Kepka (1984)
Czechoslovak Mathematical Journal
A. Ehrenfeucht, G. Rozenberg, T. Harju (1993)
Semigroup forum
A. Nagy (1994)
Semigroup forum
L. Sin-Min (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Antonio Restivo (1989)
Semigroup forum
Julien Querré (1966/1967)
Séminaire Dubreil. Algèbre et théorie des nombres
J.P. Troallic, G. Hansel (1983)
Semigroup forum
J.T. Borrego (1970)
Aequationes mathematicae
J.T. Borrego (1970)
Aequationes mathematicae
Bohumil Šmarda (1976)
Mathematica Slovaca
Renáta Hrmová (1961)
Matematicko-fyzikálny časopis
G. Kowol, H. Mitsch (1976)
Semigroup forum
R.F. Tichy (1979)
Semigroup forum
Melvyn B. Nathanson, Imre Z. Ruzsa (2002)
Journal de théorie des nombres de Bordeaux
Let be an abelian semigroup, and a finite subset of . The sumset consists of all sums of elements of , with repetitions allowed. Let denote the cardinality of . Elementary lattice point arguments are used to prove that an arbitrary abelian semigroup has polynomial growth, that is, there exists a polynomial such that for all sufficiently large . Lattice point counting is also used to prove that sumsets of the form have multivariate polynomial growth.
Ressel, Paul (1976)
Abstracta. 4th Winter School on Abstract Analysis
W. Tonev (1979)
Semigroup forum