A common generalization of Kelley's theorem (concerning measures on Boolean algebra) and on von Neumann's minimax theorem
In a previous paper, the authors studied the polynomial closure of a variety of languages and gave an algebraic counterpart, in terms of Mal’cev products, of this operation. They also formulated a conjecture about the algebraic counterpart of the boolean closure of the polynomial closure – this operation corresponds to passing to the upper level in any concatenation hierarchy. Although this conjecture is probably true in some particular cases, we give a counterexample in the general case. Another...
In a previous paper, the authors studied the polynomial closure of a variety of languages and gave an algebraic counterpart, in terms of Mal'cev products, of this operation. They also formulated a conjecture about the algebraic counterpart of the boolean closure of the polynomial closure – this operation corresponds to passing to the upper level in any concatenation hierarchy. Although this conjecture is probably true in some particular cases, we give a counterexample in the general case....
The algebraic counterpart of the Wagner hierarchy consists of a well-founded and decidable classification of finite pointed ω-semigroups of width 2 and height ωω. This paper completes the description of this algebraic hierarchy. We first give a purely algebraic decidability procedure of this partial ordering by introducing a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of any ω-rational language can therefore be computed...