Displaying 61 – 80 of 2556

Showing per page

A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : Part I

Jérémie Cabessa, Jacques Duparc (2009)

RAIRO - Theoretical Informatics and Applications

The algebraic study of formal languages shows that ω-rational sets correspond precisely to the ω-languages recognizable by finite ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on...

A Garside presentation for Artin-Tits groups of type C ˜ n

F. Digne (2012)

Annales de l’institut Fourier

We prove that an Artin-Tits group of type C ˜ is the group of fractions of a Garside monoid, analogous to the known dual monoids associated with Artin-Tits groups of spherical type and obtained by the “generated group” method. This answers, in this particular case, a general question on Artin-Tits groups, gives a new presentation of an Artin-Tits group of type C ˜ , and has consequences for the word problem, the computation of some centralizers or the triviality of the center. A key point of the proof...

A multiplication of e -varieties of orthodox semigroups

Martin Kuřil (1995)

Archivum Mathematicum

We define semantically a partial multiplication on the lattice of all e–varieties of regular semigroups. In the case that the first factor is an e–variety of orthodox semigroups we describe our multiplication syntactically in terms of biinvariant congruences.

Currently displaying 61 – 80 of 2556