Idempotents and inverses in conventional semigroups
For an infinite set X, denote by Γ(X) the semigroup of all injective mappings from X to X under function composition. For α ∈ Γ(X), let C(α) = β ∈ g/g(X): αβ = βα be the centralizer of α in Γ(X). The aim of this paper is to determine those elements of Γ(X) whose centralizers have simple structure. We find α ∈ (X) such that various Green’s relations in C(α) coincide, characterize α ∈ Γ(X) such that the -classes of C(α) form a chain, and describe Green’s relations in C(α) for α with so-called finite...
We consider endomorphisms of a monoid defined by a special confluent rewriting system that admit a continuous extension to the completion given by reduced infinite words, and study from a dynamical viewpoint the nature of their infinite periodic points. For prefix-convergent endomorphisms and expanding endomorphisms, we determine the structure of the set of all infinite periodic points in terms of adherence values, bound the periods and show that all regular periodic points are attractors.