Displaying 101 – 120 of 241

Showing per page

The local integration of Leibniz algebras

Simon Covez (2013)

Annales de l’institut Fourier

This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article ends with...

The maximal subsemigroups of the ideals of some semigroups of partial injections

Ilinka Dimitrova, Jörg Koppitz (2009)

Discussiones Mathematicae - General Algebra and Applications

We study the structure of the ideals of the semigroup I O n of all isotone (order-preserving) partial injections as well as of the semigroup I M n of all monotone (order-preserving or order-reversing) partial injections on an n-element set. The main result is the characterization of the maximal subsemigroups of the ideals of I O n and I M n .

The monoid of generalized hypersubstitutions of type τ = (n)

Wattapong Puninagool, Sorasak Leeratanavalee (2010)

Discussiones Mathematicae - General Algebra and Applications

A (usual) hypersubstitution of type τ is a function which takes each operation symbol of the type to a term of the type, of the same arity. The set of all hypersubstitutions of a fixed type τ forms a monoid under composition, and semigroup properties of this monoid have been studied by a number of authors. In particular, idempotent and regular elements, and the Green’s relations, have been studied for type (n) by S.L. Wismath. A generalized hypersubstitution of type τ=(n) is a mapping σ which takes...

The monoid of suspensions and loops modulo Bousfield equivalence

Jeff Strom (2008)

Fundamenta Mathematicae

The suspension and loop space functors, Σ and Ω, operate on the lattice of Bousfield classes of (sufficiently highly connected) topological spaces, and therefore generate a submonoid ℒ of the complete set of operations on the Bousfield lattice. We determine the structure of ℒ in terms of a single parameter of homotopy theory which is closely tied to the problem of desuspending weak cellular inequalities.

Currently displaying 101 – 120 of 241