The local and global varieties induced by nilpotent monoids
This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article ends with...
We study the structure of the ideals of the semigroup of all isotone (order-preserving) partial injections as well as of the semigroup of all monotone (order-preserving or order-reversing) partial injections on an n-element set. The main result is the characterization of the maximal subsemigroups of the ideals of and .
A (usual) hypersubstitution of type τ is a function which takes each operation symbol of the type to a term of the type, of the same arity. The set of all hypersubstitutions of a fixed type τ forms a monoid under composition, and semigroup properties of this monoid have been studied by a number of authors. In particular, idempotent and regular elements, and the Green’s relations, have been studied for type (n) by S.L. Wismath. A generalized hypersubstitution of type τ=(n) is a mapping σ which takes...
The suspension and loop space functors, Σ and Ω, operate on the lattice of Bousfield classes of (sufficiently highly connected) topological spaces, and therefore generate a submonoid ℒ of the complete set of operations on the Bousfield lattice. We determine the structure of ℒ in terms of a single parameter of homotopy theory which is closely tied to the problem of desuspending weak cellular inequalities.