Displaying 301 – 320 of 556

Showing per page

Realizations of Loops and Groups defined by short identities

Anthony Donald Keedwell (2009)

Commentationes Mathematicae Universitatis Carolinae

In a recent paper, those quasigroup identities involving at most three variables and of “length” six which force the quasigroup to be a loop or group have been enumerated by computer. We separate these identities into subsets according to what classes of loops they define and also provide humanly-comprehensible proofs for most of the computer-generated results.

Recursively differentiable quasigroups and complete recursive codes

Vladimir I. Izbash, Paraskovya N. Syrbu (2004)

Commentationes Mathematicae Universitatis Carolinae

Criteria of recursive differentiability of quasigroups are given. Complete recursive codes which attains the Joshibound are constructed using recursively differentiable k -ary quasigroups.

Reflection loops of spaces with congruence and hyperbolic incidence structure

Alexander Kreuzer (2004)

Commentationes Mathematicae Universitatis Carolinae

In an absolute space ( P , 𝔏 , , α ) with congruence there are line reflections and point reflections. With the help of point reflections one can define in a natural way an addition + of points which is only associative if the product of three point reflection is a point reflection again. In general, for example for the case that ( P , 𝔏 , α ) is a linear space with hyperbolic incidence structure, the addition is not associative. ( P , + ) is a K-loop or a Bruck loop.

Regular permutation sets and loops

Rita Capodaglio (2003)

Bollettino dell'Unione Matematica Italiana

Two suitable composition laws are defined in a regular permutation set in order to find new characterizations of some important classes of loops.

Regulated buildups of 3-configurations

Václav J. Havel (1994)

Archivum Mathematicum

We deal with two types of buildups of 3-configurations: a generating buildup over a given edge set and a regulated one (according to maximal relative degrees of vertices over a penetrable set of vertices). Then we take account to minimal generating edge sets, i.e., to edge bases. We also deduce the fundamental relation between the numbers of all vertices, of all edges from edge basis and of all terminal elements. The topic is parallel to a certain part of Belousov' “Configurations in algebraic...

Currently displaying 301 – 320 of 556