The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a positive integer , the usual definitions of -quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin -cubes, or by identities on different -ary operations. In this paper, a more symmetrical approach to the specification of -quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.
We study properties of Steiner loops which are of fundamental importance to develop a combinatorial theory of loops along the lines given by Combinatorial Group Theory. In a summary we describe our findings.
A binary operation “” which satisfies the identities , , and is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order with centre of order and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be maxi-Pasch. We show that...
Commutative Moufang loops were amongst the first (nonassociative) loops to be investigated; a great deal is known about their structure. More generally, the interplay of commutativity and associativity in (not necessarily commutative) Moufang loops is well known, e.g., the many associator identities and inner mapping identities involving commutant elements, especially those involving the exponent three. Here, we investigate all of this in the variety of Bol loops.
A construction is given, in a variety of groups, of a ``functorial center'' called the endocenter. The endocenter facilitates the identification of universal multiplication groups of groups in the variety, addressing the problem of determining when combinatorial multiplication groups are universal.
A loop is automorphic if all its inner mappings are automorphisms. We construct the free commutative automorphic -generated loop of nilpotency class . It has dimension over the integers.
Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops, admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in turn, form the setting for hyperbolic geometry just as vector spaces form the setting for Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space is the velocity of the center of momentum of three massive objects with equal masses located at the triangle vertices. Employing gyrovector space techniques we find...
The binary operation , called Jordan triple product, and its variants (such as e.g. the sequential product or the inverted Jordan triple product ) appear in several branches of operator theory and matrix analysis. In this paper we briefly survey some analytic and algebraic properties of these operations, and investigate their intimate connection to Thompson type isometries in different operator algebras.
It is known that (ℤₙ,-ₙ) are examples of entropic quasigroups which are not groups. In this paper we describe the table of characters for quasigroups (ℤₙ,-ₙ).
In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.
A natural loop structure is defined on the set of unimodular upper-triangular matrices over a given field. Inner mappings of the loop are computed. It is shown that the loop is non-associative and nilpotent, of class 3. A detailed listing of the loop conjugacy classes is presented. In particular, one of the loop conjugacy classes is shown to be properly contained in a superclass of the corresponding algebra group.
Currently displaying 1 –
20 of
29