On the universality of central loops.
The paper deals with quasigroup identities under isotopies. The terminology is taken from [2], [3] and [4]. Stimulated by geometric illustrations, V. D. Belousov in [2] has presented two important identity properties and posed a question for which identities these properties are necessary and sufficient for the identity to be invariant under isotopies. Inspired by V. D. Belousov, G. Monoszová investigated in [6] one special kind of identities for which both Belousov’s properties give necessary and...
We derive necessary and sufficient conditions for there to exist a latin square of order containing two subsquares of order and that intersect in a subsquare of order . We also solve the case of two disjoint subsquares. We use these results to show that: (a) A latin square of order cannot have more than subsquares of order , where . Indeed, the number of subsquares of order is bounded by a polynomial of degree at most in . (b) For all there exists a loop of order in which every...