Displaying 61 – 80 of 84

Showing per page

On the resolvability of Hall triple systems

Martin Oxenham, Rey Casse (1998)

Bollettino dell'Unione Matematica Italiana

È ben noto che fra le classi di sistemi ternari di Hall (HTS), gli HTS Abeliani ammettano una risoluzione siccome sono esattamente gli spazi affini finiti d'ordine 3; per questi sistemi una tal risoluzione è fornita dalla relazione di parallelismo. In questa nota viene dimostrato che certe classi di HTS non Abeliani costrutti dai gruppi di Burnside B 3 , r , r 3 anche ammettono una risoluzione. Allora, questi esempi di HTS si possono considerare anche come spazi finiti di Sperner e dunque la nota conclude...

On the structure and zero divisors of the Cayley-Dickson sedenion algebra

Raoul E. Cawagas (2004)

Discussiones Mathematicae - General Algebra and Applications

The algebras ℂ (complex numbers), ℍ (quaternions), and 𝕆 (octonions) are real division algebras obtained from the real numbers ℝ by a doubling procedure called the Cayley-Dickson Process. By doubling ℝ (dim 1), we obtain ℂ (dim 2), then ℂ produces ℍ (dim 4), and ℍ yields 𝕆 (dim 8). The next doubling process applied to 𝕆 then yields an algebra 𝕊 (dim 16) called the sedenions. This study deals with the subalgebra structure of the sedenion algebra 𝕊 and its zero divisors. In particular, it shows...

On the structure of finite loop capable Abelian groups

Markku Niemenmaa (2007)

Commentationes Mathematicae Universitatis Carolinae

Loop capable groups are groups which are isomorphic to inner mapping groups of loops. In this paper we show that abelian groups C p k × C p × C p , where k 2 and p is an odd prime, are not loop capable groups. We also discuss generalizations of this result.

On the structure of finite loop capable nilpotent groups

Miikka Rytty (2010)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider finite loops and discuss the problem which nilpotent groups are isomorphic to the inner mapping group of a loop. We recall some earlier results and by using connected transversals we transform the problem into a group theoretical one. We will get some new answers as we show that a nilpotent group having either C p k × C p l , k > l 0 as the Sylow p -subgroup for some odd prime p or the group of quaternions as the Sylow 2 -subgroup may not be loop capable.

On the structure of finite paramedial quasigroups

V. A. Shcherbacov, D. I. Pushkashu (2010)

Commentationes Mathematicae Universitatis Carolinae

Information on the structure of finite paramedial quasigroups, including a classification of finite simple paramedial quasigroups, is given. The problem ``Classify the finite simple paramedial quasigroups'' was posed by J. Ježek and T. Kepka at the conference LOOPS'03, Prague 2003.

On the uniqueness of loops M ( G , 2 )

Petr Vojtěchovský (2003)

Commentationes Mathematicae Universitatis Carolinae

Let G be a finite group and C 2 the cyclic group of order 2. Consider the 8 multiplicative operations ( x , y ) ( x i y j ) k , where i , j , k { - 1 , 1 } . Define a new multiplication on G × C 2 by assigning one of the above 8 multiplications to each quarter ( G × { i } ) × ( G × { j } ) , for i , j C 2 . If the resulting quasigroup is a Bol loop, it is Moufang. When G is nonabelian then exactly four assignments yield Moufang loops that are not associative; all (anti)isomorphic, known as loops M ( G , 2 ) .

Currently displaying 61 – 80 of 84