Seminormed spaces
Page 1
Pedro Telleria (1995)
Annales mathématiques Blaise Pascal
Moiz ud Din Khan, Rafaqat Noreen, Muhammad Siddique Bosan (2016)
Open Mathematics
In this paper, we continue the study of s-topological and irresolute-topological groups. We define semi-quotient mappings which are stronger than semi-continuous mappings, and then consider semi-quotient spaces and groups. It is proved that for some classes of irresolute-topological groups (G, *, τ) the semi-quotient space G/H is regular. Semi-isomorphisms of s-topological groups are also discussed.
Anna Giordano Bruno (2008)
Rendiconti del Seminario Matematico della Università di Padova
Ronald Beattie, Heinz-Peter Butzmann (1987)
Czechoslovak Mathematical Journal
Lydia Außenhofer (2001)
Studia Mathematica
In [2] W. Banaszczyk introduced nuclear groups, a Hausdorff variety of abelian topological groups which is generated by all nuclear vector groups (cf. 2.3) and which contains all nuclear vector spaces and all locally compact abelian groups. We prove in 5.6 that the Hausdorff variety generated by all nuclear vector spaces and all locally compact abelian groups (denoted by 𝒱₁) is strictly smaller than the Hausdorff variety of all nuclear groups (denoted by 𝒱₂). More precisely,...
J. Nienhuys (1975)
Fundamenta Mathematicae
Artico, Giuliano, Malykhin, Viatcheslav I., Marconi, Umberto (2001)
Mathematica Pannonica
Iv. Prodanov (1977)
Mathematische Annalen
Julien Melleray (2006)
Fundamenta Mathematicae
Building on earlier work of Katětov, Uspenskij proved in [8] that the group of isometries of Urysohn's universal metric space 𝕌, endowed with the pointwise convergence topology, is a universal Polish group (i.e. it contains an isomorphic copy of any Polish group). Answering a question of Gao and Kechris, we prove here the following, more precise result: for any Polish group G, there exists a closed subset F of 𝕌 such that G is topologically isomorphic to the group of isometries of 𝕌 which map...
Montserrat Bruguera, María Jesús Chasco (2001)
Czechoslovak Mathematical Journal
A reflexive topological group is called strongly reflexive if each closed subgroup and each Hausdorff quotient of the group and of its dual group is reflexive. In this paper we establish an adequate concept of strong reflexivity for convergence groups. We prove that complete metrizable nuclear groups and products of countably many locally compact topological groups are BB-strongly reflexive.
Constancio Hernández, Mihail G. Tkachenko (2004)
Commentationes Mathematicae Universitatis Carolinae
We show that every subgroup of an -factorizable abelian -group is topologically isomorphic to a closed subgroup of another -factorizable abelian -group. This implies that closed subgroups of -factorizable -groups are not necessarily -factorizable. We also prove that if a Hausdorff space of countable pseudocharacter is a continuous image of a product of -spaces and the space is pseudo--compact, then . In particular, direct products of -factorizable -groups are -factorizable and...
Hernández, Constancio, Tkačenko, Michael (1998)
Commentationes Mathematicae Universitatis Carolinae
Constancio Hernández, Mihail G. Tkachenko (1998)
Commentationes Mathematicae Universitatis Carolinae
The properties of -factorizable groups and their subgroups are studied. We show that a locally compact group is -factorizable if and only if is -compact. It is proved that a subgroup of an -factorizable group is -factorizable if and only if is -embedded in . Therefore, a subgroup of an -factorizable group need not be -factorizable, and we present a method for constructing non--factorizable dense subgroups of a special class of -factorizable groups. Finally, we construct a closed...
Adalberto Orsatti (1970)
Rendiconti del Seminario Matematico della Università di Padova
Alberto Zelger (1974)
Rendiconti del Seminario Matematico della Università di Padova
G. De Marco (1972)
Rendiconti del Seminario Matematico della Università di Padova
Roland Coghetto (2015)
Formalized Mathematics
Hölzl et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6]. First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16]. Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables...
Michael R. Herman (1973)
Annales de l'institut Fourier
Il est démontré que le groupe des difféomorphismes du tore qui sont isotopes à l’identité est un groupe qui est égal à son groupe des commutateurs. Il résulte de D.A.B. Epstein que c’est un groupe simple. Un lemme fondamental est utilisé ; il donne la structure locale des orbites de certaines translations du tore ; ce lemme est une application du théorème des fonctions implicites de F. Sergeraert.
Iulius Gy. Maurer, Miklós Szilágyi (1970)
Rendiconti del Seminario Matematico della Università di Padova
R.J. Koch, J.A. Hildebrant (1986)
Semigroup forum
Page 1