Semigroup Extensions.
Soit un groupe localement compact abélien ou un groupe de Lie et un compact parfait de . Il existe alors un compact de mesure de Haar nulle tel que soit d’intérieur non vide. En particulier si est métrisable, les seuls ensembles analytiques tels que soit de mesure nulle dès que l’est, sont dénombrables.
Throughout this abstract, is a topological Abelian group and is the space of continuous homomorphisms from into the circle group in the compact-open topology. A dense subgroup of is said to determine if the (necessarily continuous) surjective isomorphism given by is a homeomorphism, and is determined if each dense subgroup of determines . The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is...
It was known that free Abelian groups do not admit a Hausdorff compact group topology. Tkachenko showed in 1990 that, under CH, a free Abelian group of size admits a Hausdorff countably compact group topology. We show that no Hausdorff group topology on a free Abelian group makes its -th power countably compact. In particular, a free Abelian group does not admit a Hausdorff -compact nor a sequentially compact group topology. Under CH, we show that a free Abelian group does not admit a Hausdorff...