Ein Problem aus der Theorie der Gleichverteilung. I. Teil.
A subset X of a group G is called left genericif finitely many left translates of X cover G. Our main result is that if G is a definably compact group in an o-minimal structure and a definable X ⊆ G is not right generic then its complement is left generic. Among our additional results are (i) a new condition equivalent to definable compactness, (ii) the existence of a finitely additive invariant measure on definable sets in a definably compact group G in the case where G = *H...
In this paper, we extend some results of D. Dolzan on finite rings to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.
The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, . We show: Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m, or α > ω and , then G admits a pseudocompact group topology of weight α. Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies . Theorem 5.2(b). If G is divisible Abelian with , then G admits at most -many...
We prove that every nonmetrizable compact connected Abelian group G has a family H of size |G|, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H ∩ H'={0} for distinct H,H' ∈ H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size |G| consisting of proper dense pseudocompact subgroups of G such that each intersection H H'...