Étude de certaines représentations induites d'un groupe de Lie résoluble exponentiel
Consider a simple non-compact algebraic group, over any locally compact non-discrete field, which has Kazhdan’s property . For any such group, , we present a Kazhdan set of two elements, and compute its best Kazhdan constant. Then, settling a question raised by Serre and by de la Harpe and Valette, explicit Kazhdan constants for every lattice in are obtained, for a “geometric” generating set of the form , where is a ball of radius , and the dependence of on is described explicitly....