Théorie directe des groupes de Lie, II
It is a basic fact in infinite-dimensional Lie theory that the unit group of a continuous inverse algebra A is a Lie group. We describe criteria ensuring that the Lie group is regular in Milnor’s sense. Notably, is regular if A is Mackey-complete and locally m-convex.
The aim of this paper is to determine explicitly the algebraic structure of the curvature algebra of the 3-dimensional Heisenberg group with left invariant cubic metric. We show, that this curvature algebra is an infinite dimensional graded Lie subalgebra of the generalized Witt algebra of homogeneous vector fields generated by three elements.