Displaying 61 – 80 of 144

Showing per page

Invariance identity in the class of generalized quasiarithmetic means

Janusz Matkowski (2014)

Colloquium Mathematicae

An invariance formula in the class of generalized p-variable quasiarithmetic means is provided. An effective form of the limit of the sequence of iterates of mean-type mappings of this type is given. An application to determining functions which are invariant with respect to generalized quasiarithmetic mean-type mappings is presented.

Invariance in the class of weighted quasi-arithmetic means

Justyna Jarczyk, Janusz Matkowski (2006)

Annales Polonici Mathematici

Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means M,N,K such that K is (M,N)-invariant, that is, K∘(M,N) = K. Some applications to iteration theory and functional equations are presented.

Invariant graphs of functions for the mean-type mappings

Janusz Matkowski (2012)

ESAIM: Proceedings

Let I be a real interval, J a subinterval of I, p ≥ 2 an integer number, and M1, ... , Mp : Ip → I the continuous means. We consider the problem of invariance of the graphs of functions ϕ : Jp−1 → I with respect to the mean-type mapping M = (M1, ... , Mp).Applying a result on the existence and uniqueness of an M -invariant mean [7], we prove that if the graph of a continuous function ϕ : Jp−1 → I ...

Iterated quasi-arithmetic mean-type mappings

Paweł Pasteczka (2016)

Colloquium Mathematicae

We work with a fixed N-tuple of quasi-arithmetic means M , . . . , M N generated by an N-tuple of continuous monotone functions f , . . . , f N : I (I an interval) satisfying certain regularity conditions. It is known [initially Gauss, later Gustin, Borwein, Toader, Lehmer, Schoenberg, Foster, Philips et al.] that the iterations of the mapping I N b ( M ( b ) , . . . , M N ( b ) ) tend pointwise to a mapping having values on the diagonal of I N . Each of [all equal] coordinates of the limit is a new mean, called the Gaussian product of the means M , . . . , M N taken on b. We effectively...

Means and generalized means.

Toader, Gheorghe, Toader, Silvia (2007)

JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]

Mean-value theorem for vector-valued functions

Janusz Matkowski (2012)

Mathematica Bohemica

For a differentiable function 𝐟 : I k , where I is a real interval and k , a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient conditions for the existence of a mean M : I 2 I such that 𝐟 ( x ) - 𝐟 ( y ) = ( x - y ) 𝐟 ' ( M ( x , y ) ) , x , y I , are given. Similar considerations for a theorem accompanying the Lagrange mean-value theorem are presented.

Monotonicity of generalized weighted mean values

Alfred Witkowski (2004)

Colloquium Mathematicae

The author gives a new simple proof of monotonicity of the generalized extended mean values M ( r , s ) = ( ( f s d μ ) / ( f r d μ ) ) 1 / ( s - r ) introduced by F. Qi.

Nonparametric recursive aggregation process

Elena Tsiporkova, Veselka Boeva (2004)

Kybernetika

In this work we introduce a nonparametric recursive aggregation process called Multilayer Aggregation (MLA). The name refers to the fact that at each step the results from the previous one are aggregated and thus, before the final result is derived, the initial values are subjected to several layers of aggregation. Most of the conventional aggregation operators, as for instance weighted mean, combine numerical values according to a vector of weights (parameters). Alternatively, the MLA operators...

Currently displaying 61 – 80 of 144