Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Inégalités de Łojasiewicz globales

Jean-Claude Tougeron (1991)

Annales de l'institut Fourier

On étudie les propriétés métriques des ensembles analytique réels f = 0 , avec f 𝒪 ( Ω ) , 𝒪 ( Ω ) algèbre analytique topologiquement noethérienne. Ainsi, on construit de larges classes d’algèbres 𝒪 ( Ω ) topologiquement noethériennes et vérifiant des conditions de Łojasiewicz globales d’un certain type. Comme application, on obtient des théorèmes de division de fonction 𝒞 par des fonctions analytiques.

Integrable functions for the Bernoulli measures of rank 1

Hamadoun Maïga (2010)

Annales mathématiques Blaise Pascal

In this paper, following the p -adic integration theory worked out by A. F. Monna and T. A. Springer [4, 5] and generalized by A. C. M. van Rooij and W. H. Schikhof [6, 7] for the spaces which are not σ -compacts, we study the class of integrable p -adic functions with respect to Bernoulli measures of rank 1 . Among these measures, we characterize those which are invertible and we give their inverse in the form of series.

Interval linear regression analysis based on Minkowski difference – a bridge between traditional and interval linear regression models

Masahiro Inuiguchi, Tetsuzo Tanino (2006)

Kybernetika

In this paper, we extend the traditional linear regression methods to the (numerical input)-(interval output) data case assuming both the observation/measurement error and the indeterminacy of the input-output relationship. We propose three different models based on three different assumptions of interval output data. In each model, the errors are defined as intervals by solving the interval equation representing the relationship among the interval output, the interval function and the interval...

Invariance identity in the class of generalized quasiarithmetic means

Janusz Matkowski (2014)

Colloquium Mathematicae

An invariance formula in the class of generalized p-variable quasiarithmetic means is provided. An effective form of the limit of the sequence of iterates of mean-type mappings of this type is given. An application to determining functions which are invariant with respect to generalized quasiarithmetic mean-type mappings is presented.

Invariance in the class of weighted quasi-arithmetic means

Justyna Jarczyk, Janusz Matkowski (2006)

Annales Polonici Mathematici

Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means M,N,K such that K is (M,N)-invariant, that is, K∘(M,N) = K. Some applications to iteration theory and functional equations are presented.

Invariant graphs of functions for the mean-type mappings

Janusz Matkowski (2012)

ESAIM: Proceedings

Let I be a real interval, J a subinterval of I, p ≥ 2 an integer number, and M1, ... , Mp : Ip → I the continuous means. We consider the problem of invariance of the graphs of functions ϕ : Jp−1 → I with respect to the mean-type mapping M = (M1, ... , Mp).Applying a result on the existence and uniqueness of an M -invariant mean [7], we prove that if the graph of a continuous function ϕ : Jp−1 → I ...

Currently displaying 1 – 20 of 22

Page 1 Next