Filippov's operation and some attributes
We discuss two ways to construct standard probability measures, called push-down measures, from internal probability measures. We show that the Wasserstein distance between an internal probability measure and its push-down measure is infinitesimal. As an application to standard probability theory, we show that every finitely-additive Borel probability measure on a separable metric space is a limit of a sequence of countably-additive Borel probability measures in the sense that for all bounded...
Let (X, d) be a metric space and T: X → X a continuous map. If the sequence (T n)n∈ℕ of iterates of T is pointwise convergent in X, then for any x ∈ X, the limit is a fixed point of T. The problem of determining the form of µT leads to the invariance equation µT ○ T = µT, which is difficult to solve in general if the set of fixed points of T is not a singleton. We consider this problem assuming that X = I p, where I is a real interval, p ≥ 2 a fixed positive integer and T is the mean-type mapping...
Soit un morphisme propre fini et surjectif entre deux variétés analytiques complexes. Nous donnons une caractérisation des fonctions (continues) sur qui sont de la forme où est une fonction sur . Pour cela nous introduisons la notion de fonction de type trace sur une variété analytique complexe. Ces fonctions sont analytiques réelles en dehors d’une hypersurface complexe et admettent des singularités très simples aux points de cette hypersurface.
On étudie les fonctions de deux variables réelles qui sont séparément analytiques sur un ouvert du plan. On montre que ces fonctions sont analytiques en tout point du domaine de définition hors d’un fermé de ce domaine dont les projections sur chacun des deux axes de coordonnées sont des ensembles polaires. Inversempent, pour tout tel fermé , on construit une fonction séparément analytique dont le domaine d’analyticité est le complémentaire de .
This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on . For that, our first task consists of introducing a new class of linear operators denoted and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.
We describe a general axiomatic way to define functions of class Ck, k ∈ N∪{∞} on topological abelian groups. In the category of Banach spaces, this definition coincides with the usual one. The advantage of this axiomatic approach is that one can dispense with the notion of norms and limit procedures. The disadvantage is that one looses the derivative, which is replaced by a local linearizing factor. As an application we use this approach to define C∞ functions in the setting of graded/super manifolds....