Displaying 21 – 40 of 48

Showing per page

On the complexity of sums of Dirichlet measures

Sylvain Kahane (1993)

Annales de l'institut Fourier

Let M be the set of all Dirichlet measures on the unit circle. We prove that M + M is a non Borel analytic set for the weak* topology and that M + M is not norm-closed. More precisely, we prove that there is no weak* Borel set which separates M + M from D (or even L 0 ) , the set of all measures singular with respect to every measure in M . This extends results of Kaufman, Kechris and Lyons about D and H and gives many examples of non Borel analytic sets.

On the duality between p -modulus and probability measures

Luigi Ambrosio, Simone Di Marino, Giuseppe Savaré (2015)

Journal of the European Mathematical Society

Motivated by recent developments on calculus in metric measure spaces ( X , d , m ) , we prove a general duality principle between Fuglede’s notion [15] of p -modulus for families of finite Borel measures in ( X , d ) and probability measures with barycenter in L q ( X , m ) , with q dual exponent of p ( 1 , ) . We apply this general duality principle to study null sets for families of parametric and non-parametric curves in X . In the final part of the paper we provide a new proof, independent of optimal transportation, of the equivalence...

On the extension of measures.

Baltasar Rodríguez-Salinas (2001)

RACSAM

We give necessary and sufficient conditions for a totally ordered by extension family (Ω, Σx, μx)x ∈ X of spaces of probability to have a measure μ which is an extension of all the measures μx. As an application we study when a probability measure on Ω has an extension defined on all the subsets of Ω.

On the extremality of regular extensions of contents and measures

Wolfgang Adamski (1995)

Commentationes Mathematicae Universitatis Carolinae

Let 𝒜 be an algebra and 𝒦 a lattice of subsets of a set X . We show that every content on 𝒜 that can be approximated by 𝒦 in the sense of Marczewski has an extremal extension to a 𝒦 -regular content on the algebra generated by 𝒜 and 𝒦 . Under an additional assumption, we can also prove the existence of extremal regular measure extensions.

On the Law of Large Numbers for Nonmeasurable Identically Distributed Random Variables

Alexander R. Pruss (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Let Ω be a countable infinite product Ω of copies of the same probability space Ω₁, and let Ξₙ be the sequence of the coordinate projection functions from Ω to Ω₁. Let Ψ be a possibly nonmeasurable function from Ω₁ to ℝ, and let Xₙ(ω) = Ψ(Ξₙ(ω)). Then we can think of Xₙ as a sequence of independent but possibly nonmeasurable random variables on Ω. Let Sₙ = X₁ + ⋯ + Xₙ. By the ordinary Strong Law of Large Numbers, we almost surely have E * [ X ] l i m i n f S / n l i m s u p S / n E * [ X ] , where E * and E* are the lower and upper expectations. We ask...

Currently displaying 21 – 40 of 48