On a characterization of quasicontinuous multifunctions
Differentiation of integrals of functions from the class with respect to the basis of convex sets is established. An estimate of the rate of differentiation is given. It is also shown that there exist functions in , N ≥ 3, and with ω(δ)/δ → ∞ as δ → +0 whose integrals are not differentiated with respect to the bases of convex sets in the corresponding dimension.
The -finiteness of a variational measure, generated by a real valued function, is proved whenever it is -finite on all Borel sets that are negligible with respect to a -finite variational measure generated by a continuous function.