Weak convergence of monotone functions and Weyl's criterion
In this note, we prove that the countable compactness of together with the Countable Axiom of Choice yields the existence of a nonmeasurable subset of . This is done by providing a family of nonmeasurable subsets of whose intersection with every non-negligible Lebesgue measurable set is still not Lebesgue measurable. We develop this note in three sections: the first presents the main result, the second recalls known results concerning non-Lebesgue measurability and its relations with the Axiom...